

Bodenparameter auf Ackerland in Österreich – Ergebnisse der ÖPUL-Evaluierung

Zeitliche Entwicklung und aktueller Status der Bodenparameter auf Ackerland in Österreich

1 Auflage

Ein Nachschlagewerk für die Praxis, Forschung, Beratung und Agrarpolitik

ARMIN BAJRAKTAREVIC

[Veröffentlichungsdatum]

Mit Unterstützung von Bund, Ländern und Europäischer Union

Armin Bajraktarevic

Abteilung Bodengesundheit und Pflanzenernährung

Weitere Publikationen

Bewertung des Verhältnisses zwischen organischer **Bodensubstanz und Tongehalt in** landwirtschaftlich genutzten **Böden Österreichs**

Und noch eine:

Welchen Anteil hat die Einarbeitung von Ernterückständen in österreichischen Ackerböden?

Gesammelte Daten (verwertbar bzw. nur LFBIS vorhanden)

1991 bis 2022 → alle Nutzungen (Acker bis Dauerkultur von Landwirten)

Nährstoffe, KAK, Humus, pH, Korngrößen usw.; Oberboden dominierend


und nicht alle Parameter in großer Anzahl!

Datenherkunft	Anzahl
AGES	699.696
LK OÖ (CEWE)	33.617
LK Bgld. (CEWE)	5.542
LK Kärnten	10.548
LK Stmk.	87.692
AGRANA 2001 – 2022 (nur Acker)	204.345
Summe 1991 - 2022	1.041.440

Ich denke in Produktionsgebieten

Auswertung von Ackerböden

Beispiel Phosphorversorgung

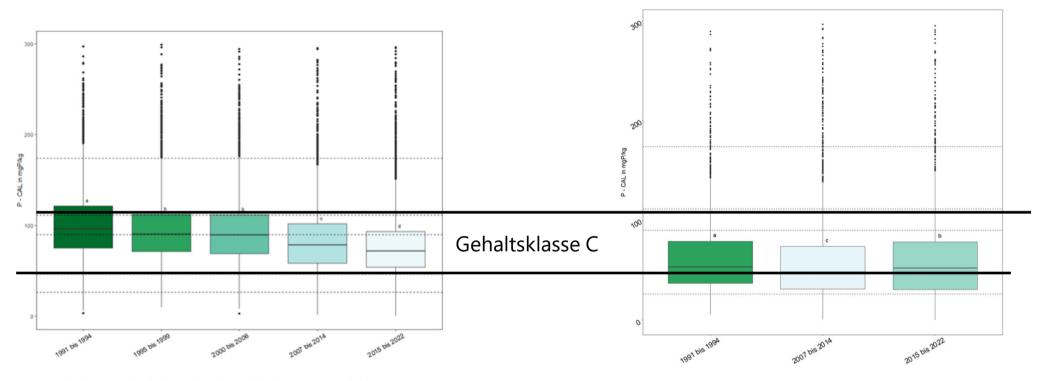


Abbildung 7: Zeitlicher Verlauf des Phosphorgehalts im Marchfeld

Abbildung 177: Zeitlicher Verlauf des Phosphorgehalt im Alpenvorland OÖ

Phosphorversorgung Niedrige Gehaltsklassen (A+B)

Messung: 2015 – 2022 ; Trend von 2000 bis 2022

Region (Kleinproduktions- gebiete)	P-Cal Anteil A+B [%]	n - Anzahl	P – EUF Anteil A+B [%]	n - Anzahl	Trend
Marchfeld	18	8.071	51	4.148	
Nordburgenland	40	6.882	35	4.792	
Weinviertel Ost	25	5.159	33	13.791	
Weinviertel West	27	3.474	34	9.751	
Wiener Becken	35	3.270	48	5.573	
AV OÖ	43	9.379	24	7.634	
AV NÖ	42	2.996	16	3.416	
WuM	43 – 40	6.532	42	1.425	
SFH	30	4.597	Südburgenland 60%		
Kärntner Becken	45-50	4.329		-	n.m.

Beispiel Kaliumversorgung

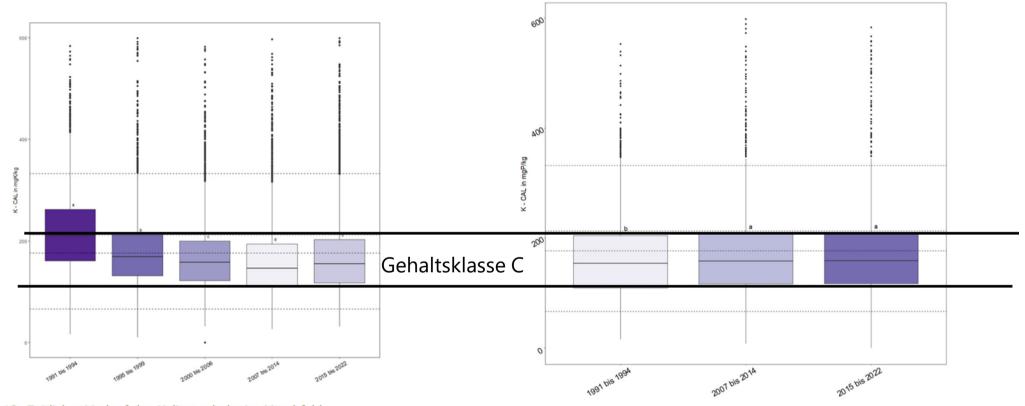


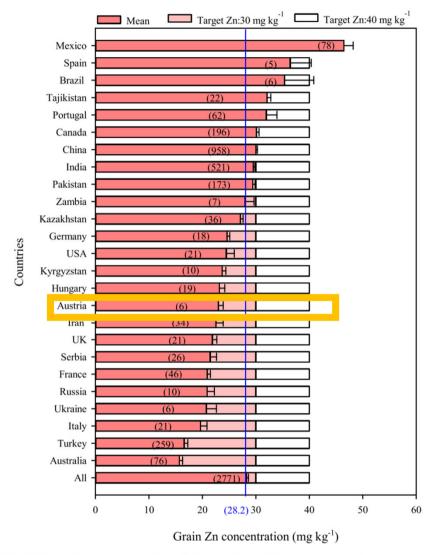
Abbildung 12: Zeitlicher Verlauf des Kaliumgehalts im Marchfeld

Abbildung 186: Zeitlicher Verlauf des Kaliumgehalts im Alpenvorland OÖ

Kaliumversorgung – Niedrige Gehaltsklassen (A+B)

Messung: 2015 – 2022 ; Trend von 2000 bis 2022

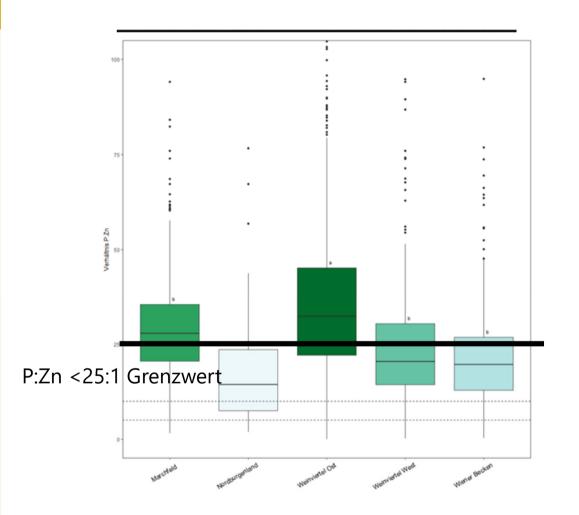
Region (Kleinproduktions- gebiete)	K-Cal Anteil A+B [%]	n - Anzahl	K – EUF Anteil A+B [%]	n - Anzahl	Trend
Marchfeld	22	8.085	29	4.148	
Nordburgenland	20	6.923	17	4.792	
Weinviertel Ost	12	5.156	17	13.791	
Weinviertel West	15	3.502	22	9.751	
Wiener Becken	25	3.294	29	5.573	
AV OÖ	22	9.378	38	7.634	
AV NÖ	25	3.054	23	3.416	
WuM	20	6.532	24	1.425	
SFH	20	4.597	Südburgenland	niedriger 50%	
Kärntner Becken	50-60	4.329			n.m.


Die vernachlässigten Nährstoffe - Spurenelemente

Messung: 2007 – 2022 ; Trend von 1991 bis 2022

2. Teil der Doktorarbeit

Region (Kleinproduktions -gebiete)	Zink Anteil A[%)	Kupfer Anteil A[%)	Bor – Acetat Anteil A[%)	Bor – EUF Anteil A[%)	Trend
Nordöstliches Flach- und Hügelland	28	4	2	6	
Alpenvorland	10	10	10 – 15	55 - 66	
Wald- und Mühlviertel	15 – 25	25	40 – 50	90	
Südöstliches Flach- und Hügelland	10	2 – 8	20 – 25	-	


Fig. 1 | **Grain Zn concentration of global wheat.** Pillars represent the average values, while the bars on pillars represent standard error. Black numbers in parentheses represent sample sizes. Blue line and blue number in parentheses denote the average Zn concentration in global wheat. The Zn biofortification target is abbreviated to target Zn. Source data are provided as a Source data file.

- Hui et al. 2025 in Nature
- Österreich: ø21 mg/kg Zn im Weizenkorn
- Bei 6t/ha Weizenertrag → 126 g/ha Zn abgeführt
- Studien zeigen: Bei wenig Zink reagieren Pflanzen stärker auf Stress (Erträge und Qualitätsparameter).
- Mensch- und Tiergesundheit muss ebenfalls in den Mittelpunkt rücken! (Vorbild Finnland mit Selen im Dünger?)

Kommt es auch auf die Verhältnisse an?

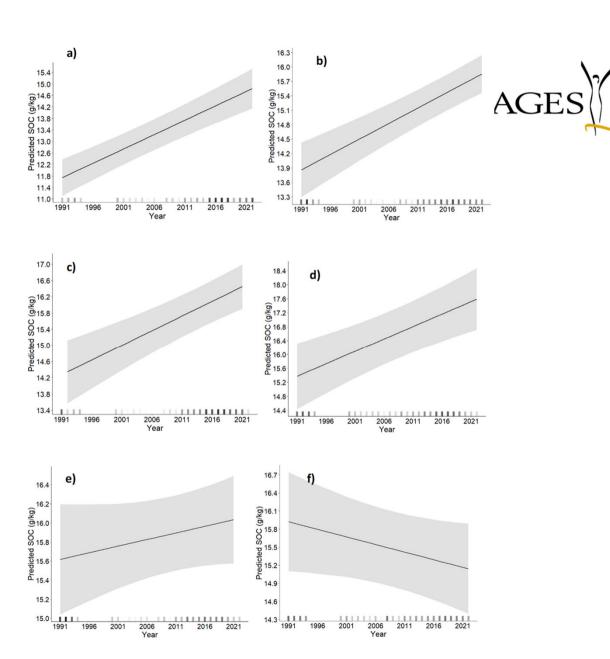

Ova et al., 2015

Abbildung 26: Phosphor:Zink – Verhältnisse im Nordöstlichen Flach- und Hügelland in der 5. Periode.

Humusgehalte (Filter: <5%; AGES + AGRANA)

Region (Kleinproduktions- gebiete)	Median [%]	n - Anzahl	Anteil Gehaltsklasse A [<2%]	Trend
Marchfeld	2,8	10.795	13	
Nordburgenland	Oberpul. Becken 2,2 Rest 2,8 – 3,3	8.788	Oberpul. Becken 28 Rest ca. 6	n. m.
Weinviertel Ost	HMG 2,3 Rest 2,5 bis 2,7	9.015	HMG 30 Rest 18	
Weinviertel West	2,4	8.055	20 bis 25	
Wiener Becken	3,1	4.774	5 bis 10	n. m.
AV OÖ (2007- 2022)	2,3 (OÖ Zentralraum) Rest: 2,8 - 3,2	22.071	25 (OÖ Zentralraum) Rest 5	n. m.
AV NÖ	2,5	3.680	15	
WuM	2,6 bis 3,3	3.565	10 bis 15	
SFH 2000 bis 2022	2,7 - 3	16.783	3 bis 14	n.m.
Kärntner Becken 2007 bis 2022	3,6	2.735	1	n.m.

- Linear Mixed Effect Model (für jeden Standort wird eigene Steigung geschätzt)
- Daher wird Stichprobenanzahl und Standorteffekt "gedimmt"
- a) Marchfeld (Signifikant)
- b)Weinviertel Ost (Signifikant)
- c) Weinviertel West (Signifikant)
- d)Wiener Boden (Signifikant)
- e) AV NÖ (Nicht Signifikant)
- f) Waldviertel (Nicht Signifikant)
- Steigung pro Jahr 0.14 to 0.34g/kg SOC = Ø 0,04%Humus/Jahr

Welche Bodenparameter beeinflussen SOC stärker?

- Austauschbares Calcium und Kalium am stärksten
- Tongehalt kein signifikanter Einfluss!

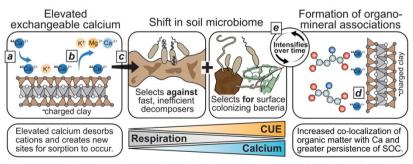
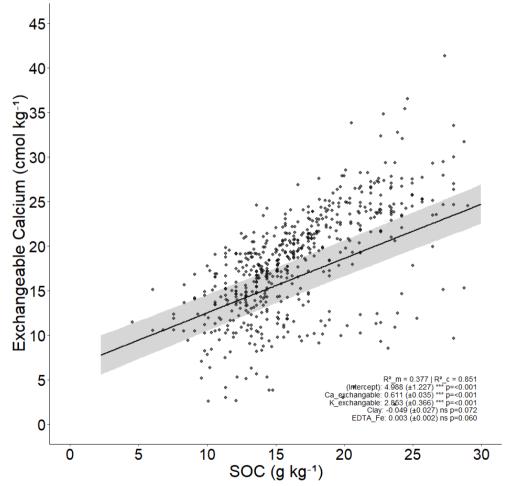
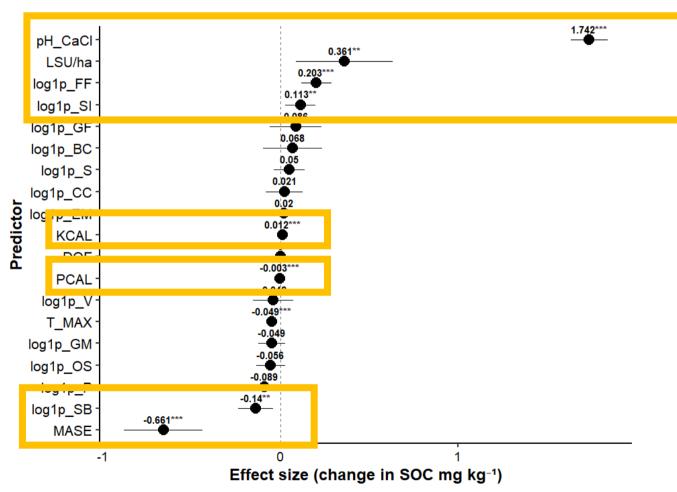



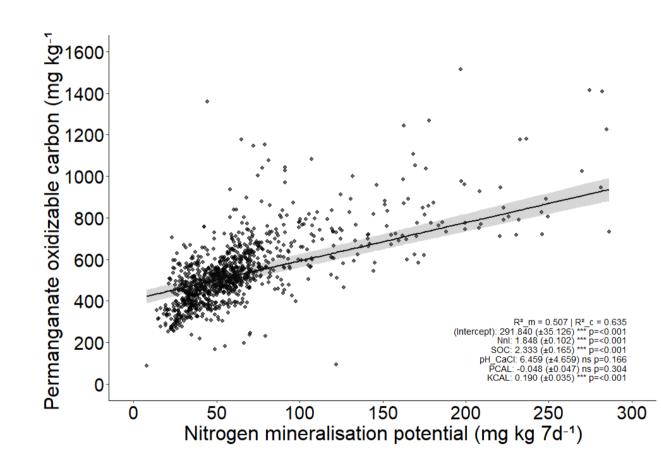
Fig. 71 Calcium promotes mineral-associated soil organic matter by mediating coupled biotica-biotic mechanisms. "Calcium additions to soil increased exchangeable "Ca content (a) and desorbed some native cations (b). Elevated calcium concentration promoted efficient surface colonizing bacteria and selected against inefficient decomposers (c), increasing carbon use efficiency, and decreasing microbial respiration. Calcium enhanced the formation of organomineral association with microbial byproducts of plant litter (d). Localization of organic compounds on surfaces reinforced selection for surface colonizing bacteria and deposition of microbial products on mineral surfaces, intensifying this cycle with time (e).



Shabtai et al. 2023 in Nature

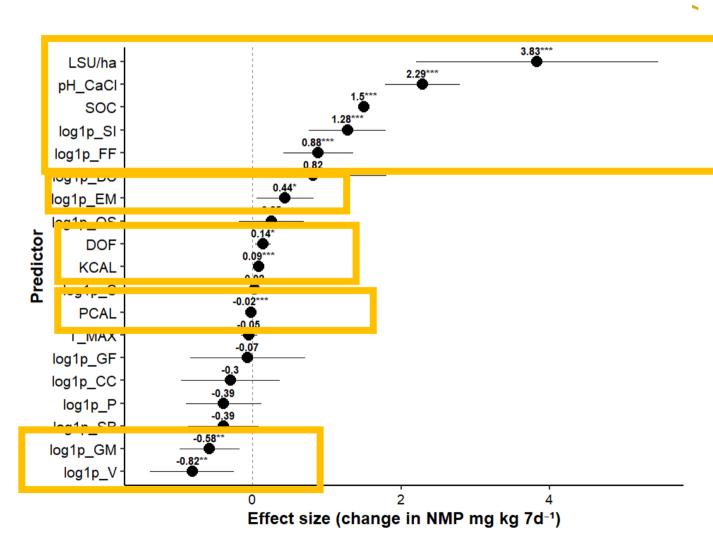
Was bestimmt den SOC-Gehalt?

- pH in CaCl₂ +
- LSU = GVE/ha +
- FF = Feldfutter +
- SI = System Immergrün +
- KCAL +
- PCAL -
- SB = Zuckerrübe -
- MASE = Ø Erosion pro Jahr -



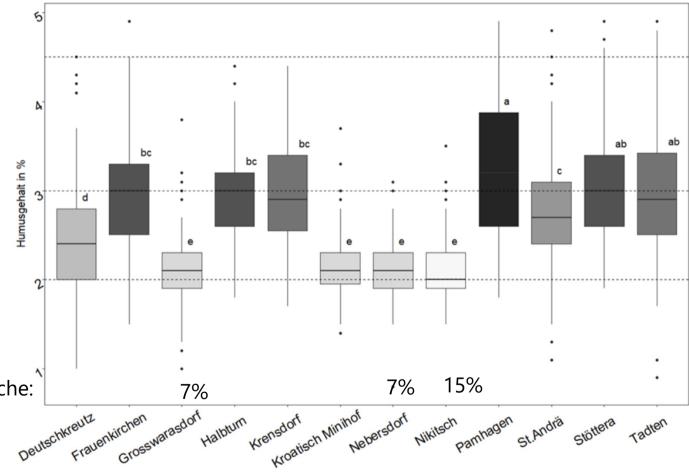
Welche Faktoren beeinflussen den "aktiven" Kohlenstoff?

- Nachlieferbarer Stickstoff (Nnl),
 SOC und pflanzenverfügbares
 Kalium
- Nnl teil des aktiven Pools


 (Aminosäuren, Amide) und
 eventuell früher Indikator für Änderung für C und N Dynamiken im Boden

Was bestimmt den nachlieferbaren Stickstoff?

- LSU = GVE/ha +
- pH in CaCl₂ +
- SOC = Bodenkohlenstoff +
- SI = System Immergrün +
- FF = Feldfutter +
- EM = ÖPUL Mulch-, Direktsaat +
- DOF = Jahre als Bio +
- KCAL +
- PCAL -
- GM = Körnernmais -
- V = Gemüse -


Der Teufel liegt im Detail?

Oder eher im Gespräch mit den Landwirten!

- Sonderregelung in
 Burgenland: Ausnahmen
 möglich, z.B. bei
 Schädlingsbefall und großer
 Trockenheit, die ein Verrotten
 verzögert und als Folge
 einige Fruchtfolgen
 verhindert hätte.
- Praktiziert bis ins Jahr 2019

Anteil an verbrannter Ackerfläche:

Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH

Armin Bajraktarevic

Fachexperte Boden und Düngemittel

Spargelfeldstraße 191 1220 Wien +4350555 34129 armin.bajraktarevic@ages.at

www.ages.at

Copyright © 2023 AGES/Armin Bajraktarevic

Alle Rechte vorbehalten. Die Inhalte sind geistiges Eigentum der AGES. Diese dürfen ausschließlich für den privaten Gebrauch verwendet werden. Alle anderen Werknutzungsarten, einschließlich der Vornahme von Änderungen und Bearbeitungen, sowie eine Weitergabe an Dritte sind untersagt.